OpenHarmony-4.基于dayu800 GPIO 实践(2)

news/2025/2/25 12:37:51
  • 基于dayu800 GPIO 进行开发

1.DAYU800开发板硬件接口

  LicheePi 4A 板载 2x10pin 插针,其中有 16 个原生 IO,包括 6 个普通 IO,3 对串口,一个 SPI。TH1520 SOC 具有4个GPIO bank,每个bank最大有32个IO:
在这里插入图片描述
  以俯视底板正面为视角,TOP为左侧,BOTTOM为右侧,GPIO对应关系如下:
在这里插入图片描述
  GPIO 号的对应关系如下图所示:
在这里插入图片描述

  从以上可以看出板载20pin插针中,4个普通GPIO对应的数字分别如下表:

在这里插入图片描述
1.2.搭建点灯环境

  给GPIO接灯,使用HiSpark_WiFi_IoT_SSL_VER.A红绿灯板,将红绿灯板和DAYU800开发版按以下方式接线:
在这里插入图片描述
  GPIO进行相应的操作:

#黄灯
echo 428 > /sys/class/gpio/export  
echo out > /sys/class/gpio/gpio428/direction 
echo 1 > /sys/class/gpio/gpio428/value  
echo 0 > /sys/class/gpio/gpio428/value

#红灯
echo 429 > /sys/class/gpio/export  
echo out > /sys/class/gpio/gpio429/direction 
echo 1 > /sys/class/gpio/gpio429/value  
echo 0 > /sys/class/gpio/gpio429/value

#绿灯
echo 430 > /sys/class/gpio/export  
echo out > /sys/class/gpio/gpio430/direction 
echo 1 > /sys/class/gpio/gpio430/value  

2.GPIO 代码框架

  • vendor/hihope/dayu800/hdf_config/khdf/device_info/device_info.hcs
 32         platform :: host {
 33             hostName = "platform_host";
 34             priority = 50;
 35             device_gpio :: device {
 36                 device0 :: deviceNode {
 37                     policy = 0;
 38                     priority = 10;
 39                     permission = 0644;
 40                     moduleName = "linux_gpio_adapter";
 41                     deviceMatchAttr = "linux_gpio_adapter";
 42                 }
 43             }
  • driver/hdf_core/adapter/khdf/linux/platform/gpio/gpio_adapter.c:
269 static int32_t LinuxGpioInit(struct HdfDeviceObject *device)
270 {
271     if (device == NULL) {
272         HDF_LOGE("%s: Fail, device is NULL.", __func__);
273         return HDF_ERR_INVALID_OBJECT;
274     }
275
276     (void)gpiochip_find(device, LinuxGpioMatchProbe);
277     HDF_LOGI("%s: dev service:%s init done!", __func__, HdfDeviceGetServiceName(device));
278     return HDF_SUCCESS;
279 }

319 struct HdfDriverEntry g_gpioLinuxDriverEntry = {
320     .moduleVersion = 1,
321     .Bind = LinuxGpioBind,
322     .Init = LinuxGpioInit,
323     .Release = LinuxGpioRelease,
324     .moduleName = "linux_gpio_adapter",
325 };
326 HDF_INIT(g_gpioLinuxDriverEntry);

  根据moduleName = "linux_gpio_adapter"进行配置之后,加载gpio hdf 驱动,调用LinuxGpioInit进行初始化,其中调用linux 内核gpiochip_find函数 遍历GPIO设备(gpio_devices)获取gpio控制器(gpio_chip).

232 static int LinuxGpioMatchProbe(struct gpio_chip *chip, void *data)
233 {
234     int32_t ret;
235     struct GpioCntlr *cntlr = NULL;
236
241     HDF_LOGI("%s: find gpio chip(start:%d, count:%u)", __func__, chip->base, chip->ngpio);
246
247     cntlr = (struct GpioCntlr *)OsalMemCalloc(sizeof(*cntlr));
252
253     cntlr->ops = &g_method;  //gpio 操作集
254     cntlr->start = (uint16_t)chip->base;
255     cntlr->count = (uint16_t)chip->ngpio;
256     ret = GpioCntlrAdd(cntlr);
263
264     HDF_LOGI("%s: add gpio controller(start:%d, count:%u) succeed",
265         __func__, cntlr->start, cntlr->count);
266     return 0; // return 0 to continue
267 }


215 static struct GpioMethod g_method = {
216     .write = LinuxGpioWrite,
217     .read = LinuxGpioRead,
218     .setDir = LinuxGpioSetDir,
219     .getDir = LinuxGpioGetDir,
220     .setIrq = LinuxGpioSetIrq,
221     .unsetIrq = LinuxGpioUnsetIrq,
222     .enableIrq = LinuxGpioEnableIrq,
223     .disableIrq = LinuxGpioDisableIrq,
224 };

3.调试GPIO代码

3.1.代码目录结构

  vendor/hihope/dayu800目录下新建sample目录,目录结构如下:

dayu800/dayu800-sig/vendor/hihope/dayu800/sample$ tree
.
├── BUILD.gn
└── hardware
    ├── BUILD.gn
    └── gpio
        ├── BUILD.gn
        ├── gpio_dayu800.c
        ├── gpio_dayu800.h
        └── main.c

2 directories, 6 files

3.2.增加编译sample

  创建模块目录//vendor/hihope/dayu800/sample,在vendor/hihope/dayu800/ohos.build module_list中添加 模块名称dayu800_sample,如下所示:

diff --git a/dayu800/ohos.build b/dayu800/ohos.build
index cea86ba..d268f2a 100644
--- a/dayu800/ohos.build
+++ b/dayu800/ohos.build
@@ -7,7 +7,8 @@
         "//vendor/hihope/dayu800/preinstall-config:preinstall-config",
         "//vendor/hihope/dayu800/resourceschedule:resourceschedule",
         "//vendor/hihope/dayu800/etc:product_etc_conf",
-        "//vendor/hihope/dayu800/audio:audio_policy_config"
+        "//vendor/hihope/dayu800/audio:audio_policy_config",
+        "//vendor/hihope/dayu800/sample:dayu800_sample"
       ]
     }
   },

3.3.新增sample目录BUILD.gn

  添加vendor/hihope/dayu800/sample/BUILD.gn文件,内容如下:

  1 import("//build/ohos.gni")
  2
  3 group("dayu800_sample") {
  4  deps = [
  5   "hardware:hardware"
  6  ]
  7 }

  创建名为"dayu800_sample"的group。group的作用是将多个target(可以是源文件、库文件或可执行文件等)组织在一起,方便进行编译和管理。在这个group中,依赖名为"hardware:hardware"的target。这个依赖关系意味着在编译"dayu800_sample"时,需要先编译并链接"hardware:hardware"这个target。通过使用group,可以更方便地管理项目的编译和构建过程。

3.4.新增sample/hardware目录下的BUILD.gn

  新建hardware目录,并添加vendor/hihope/dayu800/sample/hardware/BUILD.gn文件:

  1 import("//build/ohos.gni")
  2
  3 group("hardware") {
  4  deps = [
  5   "gpio:gpio_dayu800"
  6  ]
  7 }

  创建名为"hardware"的组(group)。该组依赖于名为"gpio:gpio_dayu800"的依赖项。这个函数的作用是将"hardware"组与"gpio:gpio_dayu800"依赖项相关联。

3.5.新增sample/hardware/gpio目录下的BUILD.gn

  新建gpio目录,并添加vendor/hihope/dayu800/sample/hardware/gpio/BUILD.gn文件,输入以下内容:

  1 import("//build/ohos.gni")
  2 import("//build/ohos/ndk/ndk.gni")
  3
  4 ohos_executable("gpio_dayu800") {
  5  sources = [
  6   "main.c",
  7   "gpio_dayu800.c"
  8  ]
  9
 10  include_dirs = [ "//commonlibrary/c_utils/base/include" ]
 11
 12  external_deps = [
 13   "c_utils:utils",
 14   "hilog_native:libhilog",
 15  ]
 16
 17  install_images = [ "system" ]
 18  part_name = "product_dayu800"
 19 }

  定义名为gpio_dayu800的可执行文件目标。该目标包含了两个源文件main.c和gpio_dayu800.c,并指定了包含目录//commonlibrary/c_utils/base/include。该目标依赖于外部库c_utils:utils和hilog_native:libhilog。最后,它指定了将生成的可执行文件安装到system镜像,并将该目标归属于product_dayu800部分。

3.6.新增sample/hardware/gpio目录下文件gpio_dayu800.c和gpio_dayu800.h

  创建vendor/hihope/dayu800/sample/hardware/gpio/gpio_dayu800.c文件,内容如下:

#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <signal.h>
#include "hilog/log.h"
#include "securec.h"
#include "gpio_dayu800.h"
 
int DAYU800_GPIO_Export(int gpioNum, int bExport)
{
    int ret = -1;
    char buffer[256] = {0};
 
    if (bExport) {
        (void) snprintf_s(buffer, sizeof(buffer), sizeof(buffer), "echo %d > %s", gpioNum, DAYU800_GPIO_EXPORT);
    } else {
        (void) snprintf_s(buffer, sizeof(buffer), sizeof(buffer), "echo %d > %s", gpioNum, DAYU800_GPIO_UNEXPORT);
    }
 
    sighandler_t old_handler;
    old_handler = signal(SIGCHLD, SIG_DFL);
    ret = system(buffer);
    if (ret < 0) {
        HILOG_ERROR(LOG_CORE, "set gpio%{public}d %{public}s failed", gpioNum, bExport == 1 ? "export" : "unexport");
        return DAYU800_GPIO_ERR;
    }
    (void) signal(SIGCHLD, old_handler);
    return ret;
}
 
int DAYU800_GPIO_SetDirection(int gpioNum, int direction)
{
    int ret_sprintf_s = -1;
 
    // check gpio export or not
    char gpio_file_name[128];
    (void) memset_s(gpio_file_name, sizeof(gpio_file_name), 0, sizeof(gpio_file_name));
    ret_sprintf_s = snprintf_s(gpio_file_name, sizeof(gpio_file_name), sizeof(gpio_file_name), "%s%d/direction",
                               DAYU800_GPIO_PEX, gpioNum);
    if (ret_sprintf_s != 0) {
    }
 
    if (access(gpio_file_name, F_OK) != 0) {
        HILOG_ERROR(LOG_CORE, "gpio%{public}d not export", gpioNum);
        return DAYU800_GPIO_NOT_EXPROT_ERROR;
    }
    // set gpio direction
 
    FILE *fp = NULL;
    fp = fopen(gpio_file_name, "r+");
    if (fp == NULL) {
        HILOG_ERROR(LOG_CORE, "open %{public}s%{public}d/direction failed", DAYU800_GPIO_PEX, gpioNum);
        return DAYU800_GPIO_ERR;
    }
 
    if (direction == DAYU800_GPIO_DIRECTION_IN) {
        fprintf(fp, "%s", "in");
    } else if (direction == DAYU800_GPIO_DIRECTION_OUT) {
        fprintf(fp, "%s", "out");
    }
 
    (void) fclose(fp);
    fp = NULL;
 
    return 0;
}
 
int DAYU800_GPIO_SetValue(int gpioNum, int value)
{
    int ret_sprintf_s = -1;
 
    // check gpio export or not
    char gpio_file_name[128];
    (void) memset_s(gpio_file_name, sizeof(gpio_file_name), 0, sizeof(gpio_file_name));
    ret_sprintf_s = snprintf_s(gpio_file_name, sizeof(gpio_file_name), sizeof(gpio_file_name), "%s%d/value",
                               DAYU800_GPIO_PEX, gpioNum);
    if (ret_sprintf_s != 0) {
    }
 
    if (access(gpio_file_name, F_OK) != 0) {
        HILOG_ERROR(LOG_CORE, "gpio%{public}d not export", gpioNum);
        return DAYU800_GPIO_NOT_EXPROT_ERROR;
    }
    // set gpio value
 
    FILE *fp = NULL;
    fp = fopen(gpio_file_name, "r+");
    if (fp == NULL) {
        HILOG_ERROR(LOG_CORE, "open %{public}s%{public}d/value failed", DAYU800_GPIO_PEX, gpioNum);
        return DAYU800_GPIO_ERR;
    }
 
    if (value == DAYU800_GPIO_LOW_LEVE) {
        fprintf(fp, "%s", "0");
    } else if (value == DAYU800_GPIO_HIGH_LEVE) {
        fprintf(fp, "%s", "1");
    }
 
    (void) fclose(fp);
    fp = NULL;
 
    return 0;
}
 
int DAYU800_GPIO_IsExport(int gpioNum, int *value)
{
    int ret_sprintf_s = -1;
 
    if (value == NULL) {
        return DAYU800_GPIO_ERR;
    }
    // check gpio export or not
    char gpio_file_name[128];
    (void) memset_s(gpio_file_name, sizeof(gpio_file_name), 0, sizeof(gpio_file_name));
    ret_sprintf_s = snprintf_s(gpio_file_name, sizeof(gpio_file_name), sizeof(gpio_file_name), "%s%d/value",
                               DAYU800_GPIO_PEX, gpioNum);
    if (ret_sprintf_s != 0) {
    }
 
    if (access(gpio_file_name, F_OK) != 0) {
        HILOG_INFO(LOG_CORE, "gpio%{public}d not export", gpioNum);
        *value = DAYU800_GPIO_NOT_EXPORT;
    } else {
        *value = DAYU800_GPIO_EXPORTED;
    }
    return 0;
}
 
int DAYU800_GPIO_GetDirection(int gpioNum, int *value)
{
    int ret = 0;
    int ret_sprintf_s = -1;
 
    if (value == NULL) {
        return DAYU800_GPIO_ERR;
    }
    // check gpio export or not
    char gpio_file_name[128];
    (void) memset_s(gpio_file_name, sizeof(gpio_file_name), 0, sizeof(gpio_file_name));
    ret_sprintf_s = snprintf_s(gpio_file_name, sizeof(gpio_file_name), sizeof(gpio_file_name), "%s%d/direction",
                               DAYU800_GPIO_PEX, gpioNum);
    if (ret_sprintf_s != 0) {
    }
 
    if (access(gpio_file_name, F_OK) != 0) {
        HILOG_ERROR(LOG_CORE, "gpio%{public}d not export", gpioNum);
        return DAYU800_GPIO_NOT_EXPROT_ERROR;
    }
    // get gpio direction
 
    FILE *fp = NULL;
    char buffer[20] = {0};
    fp = fopen(gpio_file_name, "r");
    if (fp == NULL) {
        HILOG_ERROR(LOG_CORE, "read %{public}s%{public}d/direction failed", DAYU800_GPIO_PEX, gpioNum);
        return DAYU800_GPIO_ERR;
    }
    (void) fread(buffer, sizeof(buffer), 1, fp);
    (void) fclose(fp);
    fp = NULL;
    if (strstr(buffer, "out") != NULL) {
        *value = DAYU800_GPIO_DIRECTION_OUT;
    } else if (strstr(buffer, "in") != NULL) {
        *value = DAYU800_GPIO_DIRECTION_IN;
    } else {
        ret = DAYU800_GPIO_ERR;
    }
    return ret;
}
 
int DAYU800_GPIO_GetValue(int gpioNum, int *value)
{
    int ret = 0;
    int ret_sprintf_s = -1;
 
    if (value == NULL) {
        return DAYU800_GPIO_ERR;
    }
    // check gpio export or not
    char gpio_file_name[128];
    (void) memset_s(gpio_file_name, sizeof(gpio_file_name), 0, sizeof(gpio_file_name));
    ret_sprintf_s = snprintf_s(gpio_file_name, sizeof(gpio_file_name), sizeof(gpio_file_name), "%s%d/value",
                               DAYU800_GPIO_PEX, gpioNum);
    if (ret_sprintf_s != 0) {
    }
 
    if (access(gpio_file_name, F_OK) != 0) {
        HILOG_ERROR(LOG_CORE, "gpio%{public}d not export", gpioNum);
        return DAYU800_GPIO_NOT_EXPROT_ERROR;
    }
    // get gpio value
 
    FILE *fp = NULL;
    char buffer[20] = {0};
    fp = fopen(gpio_file_name, "r");
    if (fp == NULL) {
        HILOG_ERROR(LOG_CORE, "read %{public}s%{public}d/value failed", DAYU800_GPIO_PEX, gpioNum);
        return DAYU800_GPIO_ERR;
    }
    (void) fread(buffer, sizeof(buffer), 1, fp);
    (void) fclose(fp);
    fp = NULL;
    if (strstr(buffer, "0") != NULL) {
        *value = DAYU800_GPIO_LOW_LEVE;
    } else if (strstr(buffer, "1") != NULL) {
        *value = DAYU800_GPIO_HIGH_LEVE;
    } else {
        ret = DAYU800_GPIO_ERR;
    }
    return ret;
}

  创建vendor/hihope/dayu800/sample/hardware/gpio/gpio_dayu800.h文件,内容如下:

#ifndef __DAYU800_GPIO_H__
#define __DAYU800_GPIO_H__
 
#define DAYU800_GPIO_EXPORT "/sys/class/gpio/export"
#define DAYU800_GPIO_UNEXPORT "/sys/class/gpio/unexport"
#define DAYU800_GPIO_PEX "/sys/class/gpio/gpio"
 
// hilog
#undef LOG_DOMAIN
#undef LOG_TAG
#define LOG_DOMAIN 0
#define LOG_TAG "GPIO_DAYU800"
 
// gpios
#define DAYU800_GPI0_1_3 427 /* IO1_3 */
#define DAYU800_GPI0_1_4 428 /* IO1_4 */
#define DAYU800_GPI0_1_5 429 /* IO1_5 */
#define DAYU800_GPI0_1_6 430 /* IO1_6 */
 
// direction
#define DAYU800_GPIO_DIRECTION_IN 0
#define DAYU800_GPIO_DIRECTION_OUT 1
 
// is export
#define DAYU800_GPIO_NOT_EXPORT 0
#define DAYU800_GPIO_EXPORTED 1
 
// errno
#define DAYU800_GPIO_ERR (-1)
#define DAYU800_GPIO_NOT_EXPROT_ERROR (-2)
 
// value high - low level
#define DAYU800_GPIO_LOW_LEVE 0
#define DAYU800_GPIO_HIGH_LEVE 1
 
/**
 * set gpio export
 * @param gpioNum gpioNum
 * @param bExport export,0:not export 1:export
 */
int DAYU800_GPIO_Export(int gpioNum, int bExport);
 
/**
 * set gpio direction
 * @param gpioNum gpioNum
 * @param direction direction,0:in 1:out
 */
int DAYU800_GPIO_SetDirection(int gpioNum, int direction);
 
/**
 * set gpio value
 * @param gpioNum gpioNum
 * @param value value,0:low 1:high
 */
int DAYU800_GPIO_SetValue(int gpioNum, int value);
 
/**
 * check gpio export or not
 * @param gpioNum gpioNum
 * @param *value export,0:not export 1:exported
 */
int DAYU800_GPIO_IsExport(int gpioNum, int *value);
 
/**
 * get gpio direction
 * @param gpioNum gpioNum
 * @param *value direction,0:in 1:out
 */
int DAYU800_GPIO_GetDirection(int gpioNum, int *value);
 
/**
 * get gpio value
 * @param gpioNum gpioNum
 * @param *value value,0:low 1:high
 */
int DAYU800_GPIO_GetValue(int gpioNum, int *value);
 
#endif /* __DAYU800_GPIO_H__ */

  以上函数提供了对Dayu800开发板GPIO的控制,包括导出、设置方向、设置值、检查导出状态、获取方向和获取值等操作。用于管理Dayu800GPIO的C函数库。以下是每个函数的功能解释:

  • DAYU800_GPIO_Export 函数用于导出或取消导出GPIO。根据输入的bExport参数,函数将构建一个命令行字符串来执行导出或取消导出操作。如果操作成功,函数返回0,否则返回错误代码。

  • DAYU800_GPIO_SetDirection 函数用于设置GPIO的方向。首先,函数检查GPIO是否已导出。然后,它打开GPIO的方向文件,并根据输入的direction参数设置为输入或输出。

  • DAYU800_GPIO_SetValue 函数用于设置GPIO的值。首先,函数检查GPIO是否已导出。然后,它打开GPIO的值文件,并根据输入的value参数设置为低电平或高电平。

  • DAYU800_GPIO_IsExport 函数用于检查GPIO是否已导出。它构建GPIO的值文件路径并检查该文件是否存在。根据检查结果,函数通过value参数返回导出状态。

  • DAYU800_GPIO_GetDirection 函数用于获取GPIO的方向。首先,函数检查GPIO是否已导出。然后,它打开GPIO的方向文件并读取方向值。根据读取的结果,函数通过value参数返回方向值。

  • DAYU800_GPIO_GetValue 函数用于获取GPIO的值。首先,函数检查GPIO是否已导出。然后,它打开GPIO的值文件并读取值。根据读取的结果,函数通过value参数返回值。

3.7.新增sample/hardware/gpio目录下的main.c

  创建vendor/hihope/dayu800/sample/hardware/gpio/main.c文件,输入以下内容:

#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
 
#include "gpio_dayu800.h"
 
int main(int argc, char **argv)
{
    int gpioNum = DAYU800_GPI0_1_3;
    int bExport = DAYU800_GPIO_EXPORTED;
    int direction = DAYU800_GPIO_DIRECTION_OUT;
    int value = DAYU800_GPIO_HIGH_LEVE;
    int getValue = -1;
 
    // 检查参数数量以确保至少提供了预期的参数数量
    if (argc < 2) {
        printf("Usage 1: %s <gpioNum> \n", argv[0]);
        printf("Usage 2: %s <gpioNum> <value>\n", argv[0]);
        printf("Usage 3: %s <gpioNum> <value> <direction>\n", argv[0]);
        return DAYU800_GPIO_ERR;
    }
 
    // 判断是否有输入参数,如有,则赋值指定gpio口
    if (argv[1] != NULL) {
        getValue = atoi(argv[1]);
        if (getValue >= DAYU800_GPI0_1_3 && getValue <= DAYU800_GPI0_1_6) {
            gpioNum = getValue;
        } else {
            printf("please input the gpioNum between 427 and 430.\n");
            return DAYU800_GPIO_ERR;
        }
    }
 
    // 判断gpio口是否已经导出,如未导出则执行对应函数
    DAYU800_GPIO_IsExport(gpioNum, &getValue);
    if (getValue == DAYU800_GPIO_NOT_EXPORT) {
        DAYU800_GPIO_Export(gpioNum, bExport);
    }
 
    if (argc == 2) {
        // 设置gpio口值取反
        DAYU800_GPIO_GetValue(gpioNum, &getValue);
        if(getValue == DAYU800_GPIO_LOW_LEVE){
            value = DAYU800_GPIO_HIGH_LEVE;
        }else{
            value = DAYU800_GPIO_LOW_LEVE;
        }
        printf("gpioNum:[%d], curvalue:[%d] setvalue:[%d]\n", gpioNum, getValue,value);
    }
 
    if (argc >=3 && argc <= 4) {
        if (argv[2] != NULL) {
            //读取GPIO口设定值
            getValue = atoi(argv[2]);
            if (getValue >= DAYU800_GPIO_LOW_LEVE && getValue <= DAYU800_GPIO_HIGH_LEVE) {
                value = getValue;
            } else {
                printf("please input the gpio value 0 (low)or 1 (high).\n");
                return DAYU800_GPIO_ERR;
            }
        }
 
    }
 
    if (argc == 4) {
        if (argv[3] != NULL) {
            //读取GPIO口输入或输出设定
            getValue = atoi(argv[3]);
            if (getValue >= DAYU800_GPIO_DIRECTION_IN && getValue <= DAYU800_GPIO_DIRECTION_OUT) {
                direction = getValue;
            } else {
                printf("please input the gpio direction 0 (in)or 1 (out).\n");
                return DAYU800_GPIO_ERR;
            }
        }
    }
 
    // 设置gpio口为输入或输出模式
    DAYU800_GPIO_SetDirection(gpioNum, direction);
 
    // 设置gpio口电平高低
    DAYU800_GPIO_SetValue(gpioNum, value);
 
    // 获取对应gpio口的模式并打印
    DAYU800_GPIO_GetDirection(gpioNum, &getValue);
    printf("gpioNum:[%d], direction:[%d]\n", gpioNum, getValue);
 
    // 获取对应gpio口的电平值并打印
    DAYU800_GPIO_GetValue(gpioNum, &getValue);
    printf("gpioNum:[%d], Value:[%d]\n", gpioNum, getValue);
 
    return 0;
}

  以上函数实现了是用指令对Dayu800开发板的GPIO引脚的操作,根据输入参数的数量和值,函数执行不同的操作,并在终端打印出相应的信息。支持的指令格式如下:

Usage 1: gpio_dayu800 <gpioNum> 
Usage 2: gpio_dayu800 <gpioNum> <value>
Usage 3: gpio_dayu800 <gpioNum> <value> <direction>

3.8.编译代码

#全量编译
./build.sh --product-name dayu800 --gn-args full_mini_debug=false --ccache
编译完成后可以直接烧录out/dayu800/packages/phone/images下生成的档案。

#单模块编译
#前提是之前已全量编译过才可以使用单模块编译指令
./build.sh --product-name dayu800 --ccache --build-target product_dayu800
单模块编译后生成bin文件在out/dayu800/product_dayu800/product_dayu800/目录下的gpio_dayu800

3.9.hdc 调试

  将 gpio_dayu800推送到开发板,进入hdc工具所在目录,将编译生成的gpio_dayu800拷贝到hdc所在目录,开发板通过Type-C数据线连接到电脑,运行windows自带的“命令提示符”(cmd)窗口

#重新挂载DAYU800开发板的文件系统(以读写权限挂载)
hdc shell mount -o remount,rw /   

#推送到DAYU800开发板/system/bin/目录
hdc file send gpio_dayu800  /system/bin/

  在DAYU800开发板上运行测试程序,使用hdc shell指令进入到开发板终端

hdc shell

#接着运行测试指令:
gpio_dayu800 428
gpio_dayu800 429
gpio_dayu800 430
gpio_dayu800 428 0 1  //关灯
gpio_dayu800 428 1 1  //开灯

refer to

  • https://blog.csdn.net/lxs_vip/article/details/139391687
  • https://wiki.sipeed.com/hardware/zh/lichee/th1520/lpi4a/6_peripheral.html

http://www.niftyadmin.cn/n/5865510.html

相关文章

开源神器KRR:用数据驱动K8s资源优化

引言:云原生时代的资源管理之痛 在Kubernetes集群中,过度配置导致资源浪费与配置不足引发稳定性风险的矛盾始终存在。CNCF调研显示,企业平均有35%的云资源处于闲置状态。本文将揭秘开源神器KRR(Kubernetes Resource Recommender),通过数据驱动方式实现精准资源配置,实测…

详解Tomcat下载安装以及IDEA配置Tomcat(2023最新)

目录 步骤一&#xff1a;首先确认自己是否已经安装JDK步骤二&#xff1a;下载安装Tomcat步骤三&#xff1a;Tomcat配置环境变量步骤四&#xff1a;验证Tomcat配置是否成功步骤五&#xff1a;为IDEA配置Tomcat 步骤一&#xff1a;首先确认自己是否已经安装JDK jdk各版本通用安…

[java基础-JVM篇]1_JVM自动内存管理

JVM内存管理涉及但不限于类加载、对象分配、垃圾回收等&#xff0c;本篇主要记录运行时数据区域与对象相关内容。 内容主要来源《深入理解Java虚拟机&#xff1a;JVM高级特性与最佳实践》与官方文档&#xff0c;理解与表述错漏之处恳请各位大佬指正。 目录 运行时数据区域 栈 栈…

Flutter使用permission_handler请求通知权限不会弹出权限弹窗

Flutter中使用了 permission_handler 插件。 Permission.notification.request() 这样调用&#xff0c;来请求通知权限&#xff0c;怎么弄都不会弹出来权限弹窗。在iOS端上都是正常的。 解决办法&#xff1a; Future<void> sendTestNotification() async {FlutterLocal…

HarmonyOS NEXT通过关系型数据库实现数据的持久化

场景介绍 应用中&#xff0c;我们有些数据比较复杂&#xff0c;而且需要频繁的增删改查&#xff0c;这时候就不适合使用首选项来进行存储和管理了&#xff0c;HarmonyOS NEXT中的关系型数据库基于SQLite组件&#xff0c;适用于存储包含复杂关系数据。 基本概念 谓词&#xff…

基于TensorFlow.js与Web Worker的智能证件照生成方案

功能简介 本文基于TensorFlow.js与Web Worker实现了常用的“证件照”功能&#xff0c;可以对照片实现抠图并替换背景。值得一提的是&#xff0c;正常抠图的操作应该由后端进行&#xff0c;这里只是主要演示该功能实现步骤&#xff0c;并不建议该功能由前端全权处理。 限于个人技…

星环科技推出DeepSeek全场景解决方案:即开即用、企业级部署、端侧智能三位一体

星环科技&#xff08;688031.SH&#xff09;正式发布DeepSeek全场景解决方案&#xff0c;全面覆盖个人用户、企业客户及行业场景需求&#xff0c;为用户提供从个人到企业、从云端到本地的全方位AI应用支持&#xff0c;为不同需求的用户提供了灵活、高效且安全的AI解决方案。 省…

Java 实现快速排序算法:一条快速通道,分而治之

大家好&#xff0c;今天我们来聊聊快速排序&#xff08;QuickSort&#xff09;算法&#xff0c;这个经典的排序算法被广泛应用于各种需要高效排序的场景。作为一种分治法&#xff08;Divide and Conquer&#xff09;算法&#xff0c;快速排序的效率在平均情况下非常高&#xff…